A novel pitch evaluation of one-dimensional gratings based on a cross- correlation filter
نویسندگان
چکیده
If one-dimensional (1D), p –period and arbitrarily structured grating position-related topographical signals coexist with noise, it is difficult to evaluate the pitch practically using the centre-of-gravity (CG) method. The Fourier-transform-based (FT) method is the most precise to evaluate pitches; nevertheless it cannot give the uniformity of pitches. If a cross correlation filter ̶ a half period of sinusoidal waveform sequence (pT period), cross-correlates with the signals, the noise can be eliminated if pT ≈ p. After cross-correlation filtering, the distance between any two adjacent waveform peaks along the direction perpendicular to 1D grating lines is one pitch value. The pitch evaluation based on the cross-correlation filtering together with the detection of peaks position is described as the peak detection (PD) method in this paper. The pitch average and uniformity can be calculated by using the PD method. The computer simulation has indicated that the average of pitch deviations from the true pitch and the pitch variations are less than 0.2% and 0.2% for the sinusoidal and rectangular waveform signals with up to 50% uniform white noise, less than 0.1% and 1% for the sinusoidal and rectangular waveform signals and 0.6% and 2.5% for the triangular waveform signal if three waveform signals are mixed with Gaussian white, binomial and Bernoulli noise up to 50 % in standard deviation, one probability and trial probability respectively. As the examples, a highly oriented pyrolytic graphite (HOPG) with 0.246 nm distance between atoms and a 1D grating with 3000 nm nominal pitch are measured by a ultrahigh vacuum scanning tunneling microscope (UHV STM) and a metrological atomic force microscope (AFM) respectively. After the position-related topographical signals are cross-correlation filtered, the 0.240 nm and 3004.11 nm pitches calculated by using the PD method are very close to the 0.240 nm and 3003.34 nm results evaluated by the FT method.
منابع مشابه
Design and Analysis of a Novel Hexagonal Shaped Channel Drop Filter Based on Two-Dimensional Photonic Crystals
In this paper a new optical channel drop filter (CDF) based on two dimensional (2-D) photonic crystals (PhC) with hexagonal shaped structure is proposed and numerically demonstrated by using the finite-difference-time-domain (FDTD) and plane-wave-expansion (PWE) techniques. Photonic crystals (PhCs) are artificial dielectric nanostructure materials in which a periodic modulation of the material ...
متن کاملA Novel Structure for Optical Channel Drop Filter using Two-Dimensional Photonic Crystals with Square Lattice
In the present paper a novel structure for optical channel drop filter (CDF) based on photonic crystal ring resonator with circular core has been proposed. In order to design the proposed CDF, the plan wave expansion (PWE) method is applied for calculation of band structure and photonic band gap while the transmission characteristics of proposed CDF have been calculated using the finite differe...
متن کاملNovel Design of Optical Channel Drop Filter Based on Photonic Crystal Ring Resonators
In this paper, a new design of optical channel drop filter based on two- dimensional photonic crystal ring resonators with triangular lattice is proposed. The rods of this structure is silicon with the refractive index 3.46 and the surrounding environment is air with the refractive index of 1.The widest photonic band gap obtained is for filling ratio of r/a = 0.2. The filter’s transmission spec...
متن کاملImage Restoration with Two-Dimensional Adaptive Filter Algorithms
Two-dimensional (TD) adaptive filtering is a technique that can be applied to many image, and signal processing applications. This paper extends the one-dimensional adaptive filter algorithms to TD structures and the novel TD adaptive filters are established. Based on this extension, the TD variable step-size normalized least mean squares (TD-VSS-NLMS), the TD-VSS affine projection algorithms (...
متن کاملEnhancing one dimensional sensitivity with plasmonic coupling.
In this paper, we propose a cross-grating structure to enhance the critical dimension sensitivity of one dimensional nanometer scale metal gratings. Making use of the interaction between slight changes in refractive index and localized plasmons, we demonstrate sub-angstrom scale sensitivity in this structure. Compared to unaltered infinite metal gratings and truncated finite gratings, this cros...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015